Reasoning and Problem Solving Step 1: Kilograms and Kilometres

National Curriculum Objectives:

Mathematics Year 5: (5M5) Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)

Differentiation:

Questions 1, 4 and 7 (Problem Solving)

Developing Calculating missing numbers. Calculations involve converting kilometres and metres; kilograms and grams; using multiples of 10,000 or 1,000 .
Expected Calculating missing numbers. Calculations involve converting kilometres and metres; kilograms and grams; including numbers to 1 decimal place and some use of fractions.
Greater Depth Calculating missing numbers. Calculations involve converting kilometres and metres; kilograms and grams; including numbers up to 2 decimal places, fractions and use of zero as a place holder.

Questions 2, 5 and 8 (Problem Solving)
Developing Writing comparison statements involving converting and comparing kilometres and metres; kilograms and grams; using multiples of 10,000 or 1,000 .
Expected Writing comparison statements involving converting and comparing kilometres and metres; kilograms and grams; including numbers to 1 decimal place and some use of fractions.
Greater Depth Writing comparison statements involving converting and comparing kilometres and metres; kilograms and grams; including numbers up to 2 decimal places, fractions and use of zero as a place holder.

Questions 3, 6 and 9 (Reasoning)
Developing Explaining whether a statement is correct. Statement requires converting and comparing kilometres and metres; kilograms and grams; using multiples of 10,000 or 1,000 and explaining reasoning.
Expected Explaining whether a statement is correct. Statement requires converting and comparing kilometres and metres; kilograms and grams; including numbers to 1 decimal place and some use of fractions.
Greater Depth Explaining whether a statement is correct. Statement requires converting and comparing kilometres and metres; kilograms and grams; including numbers up to 2 decimal places, fractions and use of zero as a place holder.

More Year 5 Converting Units resources

Did you like this resource? Don't forget to review it on our website.
la. Complete so that each line adds up to 8 kg .
Give your answers in grams.

2a. Using the cards below, create 3 different comparison statements.

Ba. A pack of strawberries weighs 500 g .

ib. Complete so that each line adds up to 70 km .
Give your answers in metres.

2b. Using the cards below, create 3 different comparison statements.

Bb. A bunch of banana weighs 500 g .

classroomsecrets.co.uk

4a. Complete the circles so that each line adds up to $5,000 \mathrm{~m}$ in every direction. Give your answer in kilometres.

5a. Using the cards below, create 3 different comparison statements.

6a. A bag of oranges weighs $1,500 \mathrm{~g}$.

4b. Complete the circles so that each line adds up to $4,000 \mathrm{~g}$ in every direction. Give your answer in kilograms.

5b. Using the cards below, create 3 different comparison statements.

6b. A box of blueberries weighs 500 g .

Is Ewan correct?
Explain how you know.

7a. Complete the circles so that each line adds up to 6.5 km in every direction. Give your answer in kilometres.

8a. Using the cards below, create 3 different comparison statements.

9a. Each apple weighs 105g.

20 apples would cost $£ 3.20$.

Is Ruby correct?
Explain how you know.

7b. Complete the circles so that each line adds up to 8.3 kg in every direction. Give your answer in kilograms.

8b. Using the cards below, create 3 different comparison statements.

9b. A pear weighs 252 g .

10 pears would cost less than $£ 4.75$

Is Harrison correct?
Explain how you know.

Reasoning and Problem Solving Kilograms and Kilometres

Reasoning and Problem Solving Kilograms and Kilometres

Developing

1b. $40,000 \mathrm{~m}, 10,000 \mathrm{~m}$
$2 \mathrm{~b} .2 \mathrm{~kg}=2,000 \mathrm{~g}, 5,000 \mathrm{~g}>2 \mathrm{~kg}$,
$5,000 \mathrm{~g}>2,000 \mathrm{~g}$
3b. Jack is not correct. $4 \times 500 \mathrm{~g}=2,000 \mathrm{~g}$.
$2,000 \mathrm{~g}$ is equivalentto $2 \mathrm{~kg} .2 \times £ 3=£ 6$ so 4 bunches of bananas would cost $£ 6.00$

Expected

4b. First row: 0.5 kg
Second row: 2.5 kg
Third row: 2.3 kg
5b. Various possible answers, for example: $3.9 \mathrm{~kg}>3.3 \mathrm{~kg}, 3.3 \mathrm{~kg}<3,500 \mathrm{~g}$,
$3,500<3.9 \mathrm{~kg}$.
6b. Ewan is not correct.
$3 \times 500 \mathrm{~g}=1,500 \mathrm{~g}$, which is equivalent to 1.5 kg . $1.5 \times £ 2.80=£ 4.20$.

Greater Depth

7b. First row: 4.74 kg
Second row: 2.31 kg
Third row: 6.15 kg
8b. Various possible answers, for example:
$3.7 \mathrm{~kg}>3.07 \mathrm{~kg}, 3.7 \mathrm{~kg}>3,007 \mathrm{~g}, 3.07 \mathrm{~kg}>$ $3,007 \mathrm{~g}$
9b. Harrison is not correct.
10 pears would weigh $10 \times 252 \mathrm{~g}=2,520 \mathrm{~g}$, which is equivalent to 2.52 kg .2 .5 kg would cost $2.5 \times £ 1.90=£ 4.75$ so 2.52 kg would cost more than £4.75.

