Reasoning and Problem Solving

 Step 1: Numbers to Ten Million

 Step 1: Numbers to Ten Million}

National Curriculum Objectives:

Mathematics Year 6: (6N2) Read, write, order and compare numbers up to $10,000,000$ Mathematics Year 6: (6N3) Determine the value of each digit in numbers up to $10,000,000$

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing Match pairs of numbers to reach a number up to seven-digits. A selection of six numbers will be given. Includes multiples of 10,100 and 1,000 .
Expected Match pairs of numbers to reach a number up to seven-digits. More numbers to choose from.
Greater Depth Match pairs of numbers to reach a number up to seven-digits. More numbers to choose from. Includes unconventional partitioning.

Questions 2, 5 and 8 (Reasoning)
Developing Use understanding of place value and exchanging to prove whether a statement is true or false. Use of a seven-digit number. Includes multiples of 10, 100 and 1,000.
Expected Use understanding of place value and exchanging to prove whether a statement is true or false. Use of a seven-digit number.
Greater Depth Use understanding of place value and exchanging to prove whether a statement is true or false. Use of a seven-digit number. Includes unconventional partitioning.

Questions 3, 6 and 9 (Problem Solving)
Developing Create different pairs of numbers and calculate the difference between them. Use of seven-digit numbers. Includes multiples of 10, 100 and 1,000.
Expected Create different pairs of numbers and calculate the difference between them. Use of seven-digit numbers.
Greater Depth Create different pairs of numbers and calculate the difference between them. Use of seven-digit numbers and additional parameters. For example, numbers must be a multiple of a given number.

More Year 6 Place Value resources.

Did you like this resource? Don't forget to review it on our website.

1a. Match the pairs of numbers in the grid below to create the target number.

1,143,642

$1,140,000$	40,042	$1,100,642$
43,000	3,642	$1,103,600$

號

Is she correct?
Explain how you know, using examples to help you.

3a. Using the digit cards below, create three pairs of 7-digit numbers.

Your numbers must have a difference between one million and five million. Each digit card can only be used once per number.

1b. Match the pairs of numbers in the grid below to create the target number.
$1,485,617$

$1,400,600$	$1,480,007$	5,610
85,017	80,600	$1,405,017$

2b. Adam says,

Is he correct?
Explain how you know, using examples to help you.

3b. Using the digit cards below, create three pairs of 7 -digit numbers.

Your numbers must have a difference between one million and four million. Each digit card can only be used once per number.

classroomsecrets.co.uk

4a. Match the pairs of numbers in the grid below to create the target number.

3,465,326

200,320	$1,405,326$	$3,005,306$	$3,265,006$
460,020	$3,460,026$	$2,060,000$	5,300

5a. Dennis says,
If I add fifty thousand to any six-digit number, I will only need to change a maximum of three place value columns.

Is he correct?
Explain how you know, using examples to help you.

6a. Using the digit cards below, create three pairs of 7-digit numbers.

Your numbers must have a difference between one million and three million. Each digit card can only be used once per number.

4b. Match the pairs of numbers in the grid below to create the target number.

7,424,645

$7,024,605$	110,040	$6,400,605$	$1,024,040$
$7,314,605$	$6,304,640$	400,040	$1,120,005$

5b. Simon says,
If add ninety-six thousand
and two to any six-digit
number, I will have to
change the thousands
column and the ten-
thousands column.

Is he correct?
Explain how you know, using examples to help you.

6b. Using the digit cards below, create three pairs of 7 -digit numbers.

Your numbers must have a difference between one million and two million. Each digit card can only be used once per number.

7a. Match the pairs of numbers in the grid below to create the target number.

Eight million, one hundred and eighty-seven thousand, seven hundred and eighty-one.

$5,076,721$	$5,005,720$	$5,133,310$	$3,054,471$
$5,116,281$	$3,071,500$	$3,111,060$	$3,182,061$

8a. Bridget says,
If I add forty-five thousand, six hundred and twenty-two to any six-digit number, I will always have to change digits in three place value columns.

Is she correct?
Explain how you know, using examples to help you.

9a. Using the digit cards below, create three pairs of 7-digit numbers.
\square,

Your numbers must have a difference between one million and two and half million. Each digit card can only be used once per number. The digit in the ones column must be a multiple of 3 .

7b. Match the pairs of numbers in the grid below to create the target number.

Six million, eight hundred thousands, six hundreds, and seventy-eight ones.

$2,700,514$	$4,100,164$	$2,000,074$	$4,200,064$
$4,800,604$	$2,800,503$	$2,600,614$	$4,000,175$

8b. Mason says,
If I add nine hundred and ninety hundreds and six to any six-digit number, I will have to change no more than four place value columns.

Is he correct?
Explain how you know, using examples to help you.

9b. Using the digit cards below, create three pairs of 7 -digit numbers.

4

Your numbers must have a difference between one and a half million and two and half million. Each digit card can only be used once per number. The digit in the ones column must be a multiple of 2.

classroomsecrets.co.uk

Reasoning and Problem Solving Numbers to Ten Million

Reasoning and Problem Solving Numbers to Ten Million

Developing

1a. 1,140,000 $+3,642=1,143,642$
$40,042+1,103,600=1,143,642$
$1,100,642+43,000=1,143,642$
2a. Zara is incorrect because if you cross the ten thousand boundary, the thousands, ten thousands and hundred thousands columns will need to change. For example, 199,999 $+4,000=203,999$.
3a. Various answers, for example:
$\underline{7}, 291,5 \underline{0} 6-\underline{4}, 291,5 \underline{0} 6=3,000,000$
$\underline{7}, 291,5 \underline{0} 6-\underline{3}, 291,5 \underline{0} 6=4,000,000$
$\underline{8}, 291,5 \underline{0} 6-\underline{4}, 291,5 \underline{0} 6=4,000,000$

Expected

4a. $200,320+3,265,006=3,465,326$
$1,405,326+2,060,000=3,465,326$
$3,005,306+460,020=3,465,326$
$3,460,026+5,300=3,465,326$
5a. Dennis is correct because the only columns you would need to change are the ten thousands, hundred thousands and million columns. For example, 999,999 $+50,000=1,049,999$.
6a. Various answers, for example:
4,201,596-1,209,546 $=2,992,050$
$\underline{9}, 20 \underline{8}, 5 \underline{3} 6-\underline{7}, 201,5 \underline{9} 6=2,006,940$
$\underline{4}, 20 \underline{9}, 5 \underline{7} 6-\underline{3}, 201,5 \underline{4} 6=1,008,030$

Greater Depth

7a. $5,076,721+3,111,060=8,187,781$
$5,005,720+3,182,061=8,187,781$
$5,133,310+3,054,471=8,187,781$
$5,116,281+3,071,500=8,187,781$
8a. Bridget is incorrect because she could cross multiple place value boundaries depending on the number. For example, $45,622+987,654=1,033,276$.
9a. Various answers, for example:
$\underline{9}, \underline{8} 01,4 \underline{36}-\underline{8}, \underline{6} 01,4 \underline{23}=1,200,013$
$\underline{9}, \underline{2} 01,4 \underline{63}-\underline{7}, \underline{301}, 4 \underline{89}=1,899,974$
$\underline{8}, \underline{7} 01,4 \underline{56}-\underline{7}, \underline{3} 01,4 \underline{29}=1,400,027$

Developing

1b. $1,400,600+85,017=1,485,617$
$1,480,007+5,610=1,485,617$
$80,600+1,405,017=1,485,617$
$\mathbf{2 b}$. Adam is incorrect because if the number does not pass the hundreds boundary, only the tens digit will need to change. For example, 199,900 + $30=$ 199,930.
3b. Various answers, for example:
6,854,291-4,754,291 $=2,100,000$
$4,854,291-3,654,291=1,200,000$
$\underline{6}, \mathbf{7} 54,291-\underline{3}, \mathbf{6} 54,291=3,100,000$

Expected

4b. $7,024,605+400,040=7,424,645$
$110,040+7,314,605=7,424,645$
$6,400,605+1,024,040=7,424,645$
$6,304,640+1,120,005=7,424,645$
5b. Simon is incorrect because as soon as you cross the ten boundary, multiple columns will need to change. For example, $999,999+96,002=1,096,001$.
6b. Various answers, for example:
$\underline{3}, \underline{9} 04,1 \underline{8} 5-\underline{2}, \underline{3} 04,1 \underline{8} 5=1,600,000$
$\underline{2}, \underline{6} 04,1 \underline{3} 5-\underline{8}, \mathbf{2} 04,1 \underline{9} 5=1,399,940$
$\underline{8}, \underline{3} 04,1 \underline{\underline{1}} 5-\underline{\mathbf{7}}, \underline{2} 04,1 \underline{9} 5=1,100,000$

Greater Depth

7b. 2,700,514 + 4,100,164 = 6,800,678
$2,000,074+4,800,604=6,800,678$
$4,200,064+2,600,614=6,800,678$
$2,800,503+4,000,175=6,800,678$
8b. Mason is incorrect because he could cross multiple place value boundaries depending on the number. For example, $99,006+987,654=1,086,660$.
9b. Various answers, for example:
$\underline{9}, \underline{8} 5 \underline{7}, 04 \underline{6}-\underline{7}, \mathbf{6} 51,04 \underline{8}=2,205,998$
$\underline{8}, \underline{9} \underline{3}, 04 \underline{6}-\underline{7}, 15 \underline{5}, 04 \underline{6}=1,795,000$
$\underline{5}, \underline{7} \underline{9}, 04 \underline{8}-\underline{3}, \underline{6} 51,04 \underline{8}=2,108,000$

